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Article

In the past decade, educators and policy makers have 
become increasingly concerned with the low level of math-
ematics performance of U.S. students in relation to interna-
tional comparisons (Trends in International Mathematics 
and Science Study [TIMSS]; Olson, Martin, & Mullis, 
2008) and national standards (National Mathematics 
Advisory Panel [NMAP], 2008; National Research Council 
[NRC], 2001; Schmidt, Houang, & Cogan, 2002). Results 
from international comparisons show consistently low lev-
els of performance and relative rank of American students 
compared to peers from other developed countries (TIMSS; 
Olson et al., 2008). The National Assessment of Educational 
Progress indicates that only 40% of fourth graders are at or 
above proficient in mathematics and almost a fifth (18%) 
are classified as below basic. Despite the low number of 
students meeting proficiency, the results indicate progress 
at most achievement levels. The average scores at the 25th, 
50th, 75th, and 90th percentiles all were higher in 2011 than 
2009. However, for students at the highest risk (i.e., 10th 
percentile), there was no increase in their average score 
from 2009 to 2011 (National Center for Education Statistics, 
2011b). In an increasingly globalized economy where job 
growth in science, technology, engineering, and mathemat-
ics fields is expected to outpace overall job growth at 
roughly a 3:1 ratio (National Science Board, 2008), concern 
about mathematics achievement crosses the political aisle.

Signs of long-term difficulty in mathematics appear 
early with significant differences in student knowledge 
apparent at school entry on a range of concepts and skills 

from counting principles and number knowledge to more 
complex understandings of quantities, operations, and prob-
lem solving (Griffin, Case, & Siegler, 1994; Jordan, Kaplan, 
Locuniak, & Ramineni, 2007). A number of longitudinal 
research studies have begun to document that students who 
perform poorly in mathematics at the end of kindergarten 
are likely to continue to struggle throughout elementary 
school (Bodovski & Farkas, 2007; Duncan et al., 2007; 
Hanich, Jordan, Kaplan, & Dick, 2001; Morgan, Farkas, & 
Wu, 2009). For example, using a nationally representative 
sample of students from the Early Childhood Longitudinal 
Study–Kindergarten Cohort, Morgan et al. (2009) found 
that students who entered and exited kindergarten below the 
10th percentile (considered an indicator of a mathematics 
learning disability; MLD) had a 70% chance of remaining 
in the lowest 10th percentile five years later. Their overall 
mathematics achievement in fifth grade remained 2 stan-
dard deviations below students who did not demonstrate a 
MLD profile in kindergarten. Kindergarten represents a 
logical starting point to begin and address the issue of 
preventing learning disabilities in mathematics. Without 
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targeted efforts in kindergarten, the learning gap is likely to 
persist and become more difficult to remediate over time as 
students exit kindergarten without a solid foundation for 
understanding increasingly complex mathematics (Geary, 
1993; Jordan, Kaplan, & Hanich, 2002; Morgan et al., 
2009).

One potential schoolwide system to increase student 
mathematics achievement is response to intervention (RtI). 
The legislative intention of RtI is to provide a means to 
identify students with a specific learning disability based on 
their lack of response to research-based instruction (D. 
Fuchs, Mock, Morgan, & Young, 2003). Implementation of 
the most common RtI models in schools attempts to provide 
research-based instruction to all students through a contin-
uum of supports based on the student’s level of need (Burns 
& Vanderheyden, 2006; L. S. Fuchs, Fuchs, & Zumeta, 
2008). The varying degrees of support are typically classi-
fied as tiers with the first tier (Tier 1) being delivered to all 
students in a general education setting. Subsequent tiers 
provide greater instructional intensity (Tiers 2 and 3) for 
students who fail to demonstrate adequate growth. Although 
research on the use of RtI systems as a whole lack support 
(Baker, Fien, & Baker, 2010; Kovaleski & Black, 2010), 
there is evidence that individual elements of RtI models 
including specific intervention programs, instructional 
strategies, and assessment practices are effective (Gersten, 
Beckmann, et al., 2009).

Given the critical importance of a successful early start 
in mathematics, it would be reasonable to expect that an 
array of research-based instructional programs would be 
available to schools to help them meet the needs of at-risk 
students in the early elementary grades. Unfortunately, this 
is not the case. A review of mathematics programs aligned 
with the principles of RtI (screening to determine risk, 
delivery of a research-based intervention and progress mon-
itoring) found a limited number of studies (Newman-
Gonchar, Clarke, & Gersten, 2009). In addition, a recent 
overview of research on early mathematics intervention 
programs detailed the lack of studies using rigorous experi-
mental designs (Dyson, Jordan, & Glutting, 2013). The few 
programs that have been empirically tested using rigorous 
experimental designs have tended to be intervention pro-
grams for at-risk students (e.g., Bryant et al., 2011; Dyson 
et al., 2013; L. S. Fuchs et al., 2005), rather than core cur-
riculum programs for the whole class (e.g., Agodini et al., 
2009) and have focused on developing an understanding of 
whole number concepts (Gersten, Beckmann, et al., 2009). 
The NMAP (2008) noted the dearth of research-based inter-
vention programs as a significant shortcoming that required 
immediate attention to advance the quality of mathematics 
instruction provided by schools.

Recognizing that mathematics trajectories are estab-
lished early in school, kindergarten represents a critical 
transition from informal to formal mathematics and the lack 

of research-based instructional programs, our research 
group developed ROOTS, a 50-lesson (Tier 2) kindergarten 
math intervention. Previously we had developed and evalu-
ated the Early Learning in Mathematics (ELM) kindergar-
ten core curriculum (Clarke et al., 2011; Davis & 
Jungjohann, 2009). ELM consists of 120 lessons and 
focuses on four key mathematics strands: (a) Number and 
Operations, (b) Geometry, (c) Measurement, and (d) 
Vocabulary. The first three of these map directly onto the 
three content domains contained in the National Council of 
Teachers of Mathematics (NCTM, 2006) Curriculum Focal 
Points, and the fourth (vocabulary) is addressed in the 
NCTM (2000) Process Standards. We tested the efficacy of 
ELM in a randomized controlled trial (RCT), randomly 
assigning 66 kindergartens classrooms to treatment and 
control conditions. Students in the treatment condition, 
ELM, outperformed students in control classrooms on two 
distal measures of math proficiency: the Test of Early 
Mathematics Ability (TEMA; t = 2.41, p = .02, Hedges’s  
g = .15) and Early Numeracy Curriculum-Based 
Measurement (EN-CBM; t = 1.99, p = .05, g = .13; Clarke et 
al., 2011). In Condition × Risk Status analyses, at-risk stu-
dents (defined as performing below the 40th percentile on the 
TEMA at pretest) demonstrated the greatest treatment benefit. 
At-risk treatment students significantly outperformed at-risk 
control students on both the TEMA (t = 3.29, p = .0017, g = 
.24) and EN-CBM total score (t = 2.54, p = .0138, g = .22).

The pattern of findings is important for two reasons. 
First, differential impact favoring the at-risk students was 
aligned with our theoretical framework. In developing ELM 
our objective was to create a core mathematics programs 
(i.e., Tier 1) that would address the needs of the average- 
and high-performing students (in the analysis, students 
above the 40th percentile at pretest performed the same at 
posttest in both ELM and control conditions) and substan-
tially increase the mathematics achievement of students at 
risk for math difficulties (which occurred). Second, although 
ELM was beneficial to at-risk students in particular, the per-
formance of at-risk students at the end of the year did not 
match the performance of students not at risk. In other 
words, although there was differential impact by risk status, 
the ELM program did not fully eliminate the gap between 
at-risk and average-achieving students.

Our findings that ELM helped reduce but not fully elimi-
nate the achievement gap between at-risk students and their 
on-track peers were not unexpected. Given the deficits that 
at-risk students enter kindergarten with and the limitations 
of a core program targeting the learning needs of all stu-
dents to fully address the learning needs of at-risk students, 
we developed ROOTS as a Tier 2 intervention, to be used in 
conjunction with ELM. The ROOTS intervention was 
designed to focus exclusively on Number and Operations 
because an in-depth understanding of the whole number 
system is a critical step in achieving proficiency in more 
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sophisticated mathematics, such as rational numbers and 
algebra (Gersten, Beckmann, et al., 2009; NCTM, 2006; 
NRC, 2001, 2009). In kindergarten, interventions should 
target the building of conceptual understanding of whole 
number, operations, and relations (Gersten & Chard, 1999; 
NRC, 2009, Wu, 2005). For example, authors of the Institute 
of Education Sciences practice guide on effective mathe-
matics instruction and intervention for at-risk students 
observed that “individuals knowledgeable in instruction 
and mathematics look for [and develop] interventions that 
focus on whole numbers extensively in kindergarten 
through grade 5” (Gersten, Beckmann, et al., 2009, p. 18). 
Concurring, the Common Core State Standards for 
Mathematics (CCSS, 2010) recommend extensive coverage 
of whole number concepts and skills during kindergarten 
(i.e., counting and cardinality, operations and algebraic 
thinking, and number and operations in base 10). In kinder-
garten, this often entails a strong focus on developing num-
ber sense and related skills (Dyson et al., 2013).

Although the definition of number sense varies among 
experts in the field (Berch, 2005), there is general agree-
ment that it permits a child to flexibly manipulate numbers, 
use computation methods, and understand strategies for 
solving real-world and mathematical problems (Dehaene, 
1997; Gersten & Chard, 1999; Griffin, 2004). For example, 
students with early number sense can use efficient counting 
strategies, compose and decompose numbers, make magni-
tude comparisons, and understand mathematical relation-
ships, such as the connection between numbers and 
quantities. Because a growing body of evidence indicates 
that number sense and related skills can be taught and that 
instruction can increase the probability that at-risk learners 
will acquire deep numerical knowledge and reach proficient 
levels of mathematics (Bryant et al., 2011; Chard et al., 
2008; Dyson et al., 2013; Griffin et al., 1994; Locuniak & 
Jordan, 2008), an optimal window of opportunity to target 
this critical construct is in kindergarten. Therefore, a central 
aim of the ROOTS intervention is to support students’ early 
development of number sense. Many children get off to a 
good start in mathematics by developing early number 
sense through informal learning experiences at home with 
parents and in preschool settings. These children enter kin-
dergarten prepared to acquire a richer understanding of 
number and numeration. For example, they are ready to 
learn how to make quantitative comparisons and use the 
word-object correspondence principle (Dougherty, Flores, 
Louis, & Sophian, 2010; Jordan et al., 2007; Lago & 
DiPerna, 2010). Conversely, children who lack these learn-
ing opportunities are typically at an elevated risk for math-
ematics difficulties and disabilities. As a result, they struggle 
to grasp concepts such numerical equivalence and under-
stand the relationship between quantities (Gersten, 
Beckmann, et al., 2009; Griffin, 2004).

Purpose of the Study

The study employed random assignment of classrooms to 
condition and teacher selection of students to participate in 
the study to test the impact of a kindergarten intervention 
program, ROOTS, on the achievement of students at risk in 
mathematics. Specifically, we had one primary research 
question:

1. What is the impact of the ROOTS program on the 
mathematics achievement of at-risk students?

We had one secondary research question:

2. Do ROOTS students reduce the achievement gap with 
their non-at-risk peers by making greater gains than their 
non-at-risk peers?

This study has the potential to contribute to the growing 
yet still underdeveloped research base on effective mathe-
matics instruction for student’s at risk for MLD by examin-
ing a Tier 2 intervention program with a focus on critical 
whole number content and effective instructional design 
and delivery principles. In addition, because ROOTS is 
delivered within the context of a research-based Tier 1 core 
program (ELM), the study has the potential to allow for an 
examination of how to construct effective RtI models to 
deliver services to at-risk students across multiple tiers of 
instruction.

Method

Design

This study involved full-day kindergarten teachers who had 
participated in the ELM whole-classroom study (Clarke et 
al., 2011). Classrooms were assigned randomly to condi-
tion, and then within classrooms teachers selected students 
whom teachers expected would most benefit from small-
group instruction. Specifically, classrooms were randomly 
assigned to treatment or control conditions, blocking on 
teachers’ prior experience with ELM. That is, we randomly 
assigned teachers with 1 year of ELM experience to ROOTS 
or control and then randomly assigned teachers new to 
ELM implementation to ROOTS or control. In schools with 
multiple classrooms, we also assigned classrooms to condi-
tion within school. Blocking, also called stratification, on 
ELM experience and school experimentally controls for 
biases that might stem from systematic differences between 
conditions (e.g., more ROOTS teachers with no prior ELM 
experience). A total of 29 classrooms were included: 14 in 
the treatment condition (ELM + ROOTS) and 15 in the con-
trol condition (ELM only). Teachers were asked to nomi-
nate the five lowest performing students or those who would 
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most benefit from a small-group math intervention. Teachers 
nominated 140 students as eligible for small-group instruc-
tion, with 67 students in intervention classrooms and 73 
students in control classrooms. Twenty-three teachers iden-
tified five students, one teacher identified three, four teach-
ers identified four students, and one identified six, with the 
deviations from five students split similarly across 
conditions.

Classroom teachers in both conditions provided whole 
class ELM instruction throughout the year for all students, 
and treatment and control classrooms provided the same 
amount of daily mathematics instruction. In intervention 
classrooms (ELM + ROOTS), the “ROOTS students” 
received all of the whole-class ELM instruction. On 3 days 
per week, however, instead of practicing that day’s ELM 
topics independently at the end of the lesson (i.e., math 
practice worksheets), they received ROOTS instruction. 
Given that ROOTS was not offered in control classrooms, 
nominated control students participated in whole class ELM 
instruction, 5 days per week, including all of the individual-
ized math practice. We controlled for time by delivering the 
ROOTS instruction during the individual, worksheet-based 
math practice portion of ELM in treatment classrooms. 
ROOTS instruction began in January and continued until 
the end of May. Trained instructional assistants provided 
ROOTS instruction.

Participants

Instructional assistants.  A total of 14 instructional assistants 
(IAs) participated in the study; 13 were female and all iden-
tified themselves as White. IAs were included in the study 
based on time and schedule availability. Four of the IAs had 
college degrees, of whom 2 held current teacher certifica-
tions in elementary education. Of the remaining 2 IAs who 
were college graduates, one had a degree in business and 
the other had a degree in education but did not hold a cur-
rent teaching license. With respect to the remaining 11 IAs, 
3 held associate’s degree and 7 were high school graduates. 
Five of the IAs had completed college level coursework in 
mathematics. In this sample, 5 of the IAs had 10 or more 
years’ experience, 3 had between 4 and 6 years’ experience, 
and 5 had 1 to 3 years’ experience. At the time of the pres-
ent study (2009–2010), one IA was new to teaching. It is 
important to note that all IAs were employed by the partici-
pating school districts.

Students.  Students were drawn from two districts in the 
Pacific Northwest. In District A 46% of students were 
White, 27% Hispanic, 6% Asian, and 2% Black, and 44% 
were eligible for free or reduced lunch. In District B, 61% 
of students were White, 20% Hispanic, 1% Black, and 1% 
Asian, and 50% were eligible for free or reduced lunch. 
Within the ROOTS condition, 51% of students were male, 
72% were English learners, 15% received special education 

services, and the average age was 66.0 months (SD = 3.5). 
Among control participants, 55% were male, 56% were 
English learners, 16% received special education services, 
and their average age was 66.5 months (SD = 3.6). Of the 
122 students with a TEMA percentile rank, 91% scored at 
or below the 10th percentile, with 95% of students in 
ROOTS classrooms and 88% of students in control class-
rooms falling below the 10th percentile.

The sample also included 538 students who were not eli-
gible for ROOTS, with 253 in intervention classrooms and 
285 in control classrooms. Within the intervention class-
rooms, 54% of students were male, 34% were English 
learners, and the average age was 66.8 months (SD = 3.5). 
Among control participants, 46% were male, 36% were 
English learners, and their average age was 67.2 months 
(SD = 3.6). All of these students received ELM instruction, 
and none of these students participated in ROOTS.

Measures

Fidelity of implementation.  Online logs completed by the 14 
IAs who delivered the ROOTS intervention revealed that 
groups generally completed all 50 ROOTS lessons during 
the year. Trained research staff also directly measured 
implementation fidelity using a standardized observation 
instrument. The observation instrument was specifically 
designed to target mathematics activities within each lesson 
of the ROOTS curriculum. During the observations, observ-
ers coded whether IAs taught key design components pre-
scribed within each lesson activity.

All observations were scheduled in advance and observ-
ers coded fidelity of implementation data for the duration of 
the assigned 20-min instructional time periods. Each 
ROOTS group was observed 3 times over the course of the 
study, with approximately 4 to 5 weeks separating each 
observational round. Observers rated implementation fidel-
ity using a 3-point rating scale, where a score of 3 repre-
sented full implementation, 2 represented partial 
implementation, and 1 indicated an activity was not taught. 
Fidelity scores were computed as the mean across all lesson 
activities. The mean across the three observations per 
ROOTS group were used as an overall indicator of imple-
mentation fidelity. IAs demonstrated high fidelity scores  
(M = 2.92, SD = 0.06) for prescribed lesson activities. 
Interobserver reliability was measured on 20% of all obser-
vation occasions. Reliability checks consisted of two 
observers simultaneously observing ROOTS instruction 
and coding fidelity of implementation data. Intraclass cor-
relation coefficients (ICCs) were calculated to measure 
interobserver reliability. The ICC gives the proportion of 
variance associated with the occasion, opposed to observ-
ers. ICCs of .00 to .20 representing slight reliability, .21 to 
.40 representing fair reliability, .41 to .60 representing mod-
erate reliability, .61 to .80 representing substantial reliabil-
ity, .81 to 1.00 and nearly perfect (Landis & Koch, 1977). 
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Interobserver reliability of the implementation fidelity 
mean across three observations per small group showed 
substantial agreement between observers (ICCs = .67).

Test of Early Mathematics Ability.  TEMA (PRO-ED, 2007) is 
a norm-referenced individually administered measure of 
early mathematics for children ages 3 to 8 years 11 months. 
The TEMA is designed to identify student strengths and 
weaknesses in specific areas of mathematics. The TEMA 
measures both formal mathematics and informal mathemat-
ics including skills related to counting, number facts and 
calculations, and related mathematical concepts. The test 
authors report alternate-form reliability of .97, and test–
retest reliability ranges from .82 to .93. Concurrent validity 
with other criterion measures of mathematics is reported as 
ranging from .54 to .91.

Early Numeracy Curriculum-Based Measurement.  EN-CBM 
(Clarke & Shinn, 2004) is a set of four measures based on 
principles of curriculum-based measurement (Shinn, 1989). 
Each 1-min fluency-based measure assesses an important 
aspect of early numeracy development including magnitude 
comparisons and strategic counting. The EN-CBM mea-
sures have been validated for use with kindergarten students 
including established validity with other measures of early 
mathematics including the Number Knowledge Test and the 
Stanford Achievement Test (Chard et al., 2005; Chard et al., 
2008). The Oral Counting measure requires students to 
orally rote count as high as possible without making an 
error. Concurrent and predictive validities range from 46 to 
.72. The Number Identification measure requires students 
to orally identify numbers between 0 and 10 when presented 
with a set of printed number symbols. Concurrent and pre-
dictive validities range from .62 to .65. The Quantity Dis-
crimination measure requires students to name which of 
two visually presented numbers between 0 and 10 is greater. 
Concurrent and predictive validities range from .64 to .72. 
The Missing Number measure requires students to name the 
missing number from a string of numbers (0–10). Students 
are given strings of three numbers with the first, middle, or 
last number of the string missing. Concurrent and predictive 
validities range from .46 to .63.

Procedures

Data collection.  All measures were individually adminis-
tered to students. Trained staff with extensive experience in 
collecting educational research for research projects admin-
istered all student measures. All data collectors were 
required to obtain interrater reliability coefficients of .90 
prior to collecting data with students. Follow-up trainings 
were conducted prior to each data collection period to 
ensure continued reliable data collection. Student  
assessment protocols were processed using Teleform, a 

form processing application. Tests of Teleform scoring pro-
cedures of assessment protocols from previous research 
projects reveal high reliability values (i.e., .99) relative to 
assessor-scored protocols (.95).

ROOTS intervention.  ROOTS is a Tier 2 kindergarten inter-
vention program that was designed to be delivered by IAs in 
small-group instructional formats, 3 times per week, for 16 
to 20 weeks during the second half of the school year. In 
contrast to the control condition (ELM only), ROOTS dif-
fers on a number of key variables. First, ROOTS is taught in 
small groups, whereas ELM is taught to the whole class-
room. ELM occurs everyday and contains 120 lessons. 
ROOTS occurs 3 days per week and contains 50 lessons. 
ROOTS exclusively focuses on content associated with 
whole number understanding. In contrast, ELM covers con-
tent in whole number understanding, geometry and mea-
surement and thus is broader in content coverage than 
ROOTS. The goal of ROOTS is to support students’ devel-
opment of procedural fluency with and conceptual under-
standing of whole number concepts. The specific focus on 
whole number aligns with the CCSS (2010) and calls from 
mathematicians and expert panels for more focused and 
coherent Tier 1 curricula (NCTM, 2006; NMAP, 2008), and 
intervention programs designed to meet the needs of stu-
dents at risk for MLD (Gersten, Beckmann, et al., 2009). 
ROOTS provides in-depth instruction in whole number 
concepts by linking the informal mathematical knowledge 
developed prior to school entry with the formal mathemati-
cal knowledge developed in kindergarten. The program 
includes 50 lessons, approximately 20 min in duration. 
Each lesson consists of 4 to 5 brief math activities that cen-
ter on three key areas of whole number understanding: (a) 
Counting and Cardinality, (b) Number Operations, and (c) 
Base 10/Place Value. Curricular objectives advance stu-
dents from an initial understanding of whole number 
through more sophisticated aspects of whole numbers in 
kindergarten mathematics. For example, the first half of the 
curriculum addresses counting objects, identifying num-
bers, and counting on from a given number. In the second 
half, lessons focus on beginning computational methods, 
such as adding one to a number, and place value concepts, 
such as using base 10 models to compose and decompose 
teen numbers into one 10 and so many ones.

A central feature of the ROOTS program is its explicit 
and systematic approach to instruction. Carnine, Silbert, 
Kame’enui, and Tarver (2004) described explicit and sys-
tematic instruction as a method for teaching the “essential 
skills in the most effective and efficient manner possible” 
(p. 5). The emerging body of evidence generated by math-
ematics interventions for students at risk for math difficul-
ties suggests convincingly that explicit and systematic 
instruction should be an integral approach for teaching stu-
dents struggling with mathematics (Baker, Gersten, & Lee, 
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2002; Gersten, Chard, et al., 2009; Kroesbergen & Van Luit, 
2003). In small-group instructional formats, like ROOTS, 
explicit and systematic instruction has the potential capac-
ity to (a) deeply engage students in critical mathematics 
content, such as whole number concepts and (b) increase 
intervention intensity through differentiated instruction 
matched to student need (Baker et al., 2010; Clarke et al., 
2011; L. S. Fuchs & Vaughn, 2012). Consequently, it can 
accelerate learning for kindergartners at risk for MLD 
(Gersten, Beckmann, et al., 2009).

ROOTS incorporates the principles of instructional 
delivery that have been empirically validated to improve 
the mathematics achievement of at-risk learners and stu-
dents with learning disabilities (Baker et al., 2002; Gersten, 
Beckmann, et al., 2009; Nelson-Walker et al., 2012). These 
delivery principles include modeling and demonstrating 
what students will learn, providing guided practice opportu-
nities, using visual representations of mathematics, and 
delivering academic feedback. For example, lessons pro-
vide interventionists with specific guidelines for demon-
strating concepts and skills associated with whole numbers, 
and providing timely academic feedback to students as they 
engage in learning activities. The program also provides 
students with frequent and structured practice opportunities 
to promote procedural fluency and incorporates a host of 
visual representations to deepen conceptual understanding. 
Combined, the program’s delivery principles form an 
instructional base for interventionists to facilitate overt and 
conspicuous instructional interactions among teachers and 
students around key math content. An important category of 
these instructional interactions is mathematical discourse or 
math verbalizations (Gersten, Beckmann, et al., 2009; NRC, 
2001, 2009). Math verbalizations permit students to demon-
strate their mathematical thinking and understanding. Such 
verbalizations are critical for gauging mathematics profi-
ciency, particularly when students have yet to develop the 
math skills necessary to work independent of teacher sup-
port (Doabler et al., in press). In ROOTS, interventionists 
elicit math verbalizations from individual students as well 
as the group at large. Group verbalizations offer a way for 
interventionists to engage all students in the lesson’s con-
tent. Verbalizations directed to individuals allow one stu-
dent to practice with math content on his or her own. These 
opportunities also serve as effective means for differentiat-
ing instruction for students struggling with math. For exam-
ple, in ROOTS, an interventionist might provide an easier 
response opportunity for a particular student who has diffi-
culty grasping base 10 ideas, such as the grouping-by-10s 
concept.

Systematic instruction is the “behind-the-scenes” design 
activities (Kame’enui & Simmons, 1999; Simmons et al., 
2007) that attend to the architectural features of a curricu-
lum. Principles of systematic instruction include prioritiz-
ing instruction around critical content, connecting new 
content with students’ background knowledge, selecting 

and sequencing instructional examples, and scaffolding 
instruction. ROOTS focuses intensely on the whole number 
standards identified in the CCSS (2010). When introducing 
students to new and difficult mathematics concepts and 
skills, for example, the program initiates instruction with 
simpler teaching examples. Once students demonstrate ini-
tial proficiency with targeted math content, instructional 
scaffolds are systematically withdrawn to promote learner 
independence. Finally, the program incorporates positive 
teaching examples along with a select number of nonex-
amples to promote students’ discrimination skills (Coyne, 
Kame’enui, & Carnine, 2011).

Professional development.  Participating IAs attended three 
professional development (PD) workshops focused on the 
ROOTS curriculum. The initial PD workshop targeted the 
instructional objectives of Lessons 1 to 25, the critical con-
tent of kindergarten mathematics (CCSS, 2010), small-
group management techniques, and the instructional 
practices that have been empirically validated to increase 
student math achievement (e.g., teacher provided academic 
feedback; Gersten, Chard, et al., 2009). In the second and 
third workshops a similar format was followed, except that 
the focus was on the second half of the ROOTS curriculum, 
Lessons 26 to 50. Workshops were 4 hr in length and were 
organized around three principles: (a) active participation, 
(b) content focused, and (c) coherence. On at least three 
occasions, IAs also received in classroom coaching from 
two expert teachers to increase implementation fidelity. 
Implementation research shows that ongoing coaching 
enhances teachers’ sustained use of new instructional prac-
tices (Fixsen, Naoom, Blase, Friedman, & Wallace, 2005). 
Two former educators, who were knowledgeable in the sci-
ence of early mathematics development and instruction, 
served as coaches during the study. Typical coaching visits 
included direct observation and postobservation feedback 
focusing on instructional delivery and implementation 
fidelity. Some IAs received more than three coaching visits 
if they or the coach felt more support was warranted (e.g., 
when there were particularly pervasive student behavior 
problems or the IA struggled with lesson implementation).

Statistical Analysis

We assessed intervention effects on each of the primary out-
comes with a mixed model (multilevel) time by condition 
analysis (Murray, 1998) to account for students nested 
within classrooms. Primary analyses included the students 
in each classroom identified as at risk for math difficulties 
by the classroom teacher. Because each classroom included 
only one small group, the classroom and small group are 
considered the same unit for analysis purposes. The analy-
sis tests differences between conditions on change in out-
comes from the fall of kindergarten (T

1
) to the spring (T

2
) 

clustered within classroom. The specific model tests time, 
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T, coded 0 at T
1
 and 1 at T

2
, condition, C, coded 0 for con-

trol and 1 for ROOTS, and the interaction between the two 
with the following hierarchical model.

Y T e eij j j ij ij ij= + + ( )   N  1
2π π0 0~ , σ

π β β0 00 0 0 0 0j j j jC r r= + + ( )   N  1
2~ , τ

π β β1 1 11 1 1
2   N  j j j jC r r= + + ( )0 0~ , τ

In the Level 1 model, the first equation, Y
ij
 represents a 

score for individual i within classroom j, and the model 
includes time, T

ij
, as a predictor. The two Level 2 equations 

predict the intercept, π0j, and slope, π1j, from the Level 1 
model with condition, Cj. The composite model, however, 
created by substituting the Level 2 equations into the Level 
1 equation better corresponds to the presentation of results:

Y C T T C r T r eij j ij ij j j ij j ij= + + + + + +( )     1 1 11 1β β β β00 0 0 0

Given the coding of C and T, the model includes the pre-
test intercept for the control condition, β

00
, the difference 

between conditions at pretest, β
01

, the estimate of gains for 
the control condition, β

10
, and the difference in gains 

between conditions, β
11

. The model also includes three error 
variances for the classroom-level intercept, r

0j, the class-
room-level gains, T

ij
r1j

, and the residual, e
ij
. The models 

included a fourth variance term to represent the student-
level covariation between pretest and posttest assessments, 
consistent with standard gain-score analyses.

With 29 classrooms, tests of time by condition used 27 
degrees of freedom. The test of net differences, opposed to 
covariate-adjusted outcomes, provides an unbiased and 
straightforward interpretation of the results (Cribbie & 
Jamieson, 2000). The nested time by condition analysis also 
accounts the intraclass correlation associated with multiple 
students nested within the same classrooms. We also 
included all students in each classroom for additional analy-
ses to test gains among ROOTS students compared to their 
typically achieving peers. These analyses entered ROOTS 
eligibility as a moderator.

Model estimation.  We fit models to our data with SAS PROC 
MIXED version 9.2 (SAS Institute, 2009) using restricted 
maximum likelihood, generally recommended for multi-
level models (Hox, 2002). From each model, we estimated 
fixed effects and variance components. This analysis 
approach included all available data, whether or not stu-
dents’ scores were present at both time points. Maximum 
likelihood estimation for the time by condition analysis 

uses of all available data to provide potentially unbiased 
results even in the face of substantial attrition, provided the 
missing data were missing at random (Schafer & Graham, 
2002). In the present study, we did not believe that attrition 
or other missing data represented a meaningful departure 
from the missing at random assumption, meaning that miss-
ing data did not likely depend on unobserved determinants 
of the outcomes of interest (Little & Rubin, 2002). The 
majority of missing data involved students who were absent 
on the day of assessment (e.g., due to illness) or transferred 
to a new school (e.g., due to their family moving).

The models assume independent and normally distrib-
uted observations. We addressed the first, more important 
assumption (van Belle, 2008) by explicitly modeling the 
multilevel nature of the data. The data in the present study 
also do not markedly deviate from normality; skewness and 
kurtosis fell below an absolute value of 0.65 for both the 
TEMA standard score and CBM at pretest and posttest. 
Nonetheless, multilevel regression methods have also been 
found quite robust to violations of normality and outliers 
have a limited influence on the results in a variety of con-
texts For example, Hannan and Murray (1996) showed that 
group-randomized trials do not typically suffer from viola-
tions of normality at the individual level for samples with at 
least 10 clusters per condition. Murray and colleagues 
(2006) showed that violations of normality at either or both 
the individual and group levels do not bias results as long as 
the study is balanced at the group level.

Effect sizes.  To ease interpretation, we computed an effect 
size, Hedges’s g (Hedges, 1981), for each fixed effect. 
Hedges’s g, recommended by the What Works Clearing-
house (WWC, 2011), represents an individual-level effect 
size comparable to Cohen’s d (Cohen, 1988; Rosenthal & 
Rosnow, 2008).

Results

Table 1 presents means, standard deviations, and sample 
sizes for the TEMA standard score, the TEMA percentile, 
and the EN-CBM by assessment time and condition. Below 
we present results for tests of attrition effects, ROOTS 
intervention impact, and ROOTS students compared to 
peers who did not qualify for ROOTS. We also examined 
whether transitions between risk categories differed 
between students in ROOTS compared to their peers.

Attrition

Student attrition was defined as students with data at T
1
 but 

missing data at T
2
, and we examined attrition with respect 

to the ROOTS-eligible sample of 140 students. For the 
TEMA standard score, we experienced 10.7% attrition at 
T

2
, with 11 of 73 students missing T

2
 data in control class-

rooms and 4 of 67 students missing T
2
 data in ROOTS 

classrooms, χ2(1) = 3.02, p = .0821. EN-CBM scores were 
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missing for 10.0% of students at T
2
, with 10 of 73 students 

missing T
2
 data in control classrooms and 4 of 67 students 

missing T
2
 data in ROOTS classrooms, χ2(1) = 2.32, p = 

.1278. Thus, attrition rates did not differ between 
conditions.

Although differential rates of attrition are undesirable, 
differential scores on math tests present a far greater threat 
to validity, so we conducted an analysis to test whether stu-
dent math scores were differentially affected by attrition 
across conditions. We examined the effects of condition, 
attrition status, and their interaction on pretest scores of 
TEMA and EN-CBM within a mixed-model analysis of 
variance (Murray, 1998), which nests students’ T

1
 scores 

within classrooms and condition. We did not find statisti-
cally significant interactions between attrition and condi-
tion for either the TEMA standard score (p = .6877) or the 
EN-CBM (p = .6927). That is, we found no evidence of 
differential attrition for our two dependent variables.

Intervention Effects for ROOTS

Pretest differences.  First, we tested whether students dif-
fered between conditions at pretest. No differences were 
found on either the TEMA standard score (t = −1.23, df = 
27, p = .2285) or the EN-CBM (t = −0.76, df = 27, p = 
.4536). This suggests but cannot demonstrate that students 
were similar at pretest because the study has sufficient 
power (.80) to detect only medium differences between 
conditions (g ≈ .45 to .60, depending on measures).

Gains across kindergarten.  Among those students identified 
as eligible for ROOTS, we found statistically significant 
gains among students provided with ROOTS over those in 
control classrooms on the TEMA standard scores (t = 2.19, 
df = 27, p = .0371), but not the EN-CBM total score (t = 
1.35, df = 27, p = .1870). The nested time by condition 
model estimated differences in gains between intervention 

Table 1.  Descriptive Statistics for Mathematics Measures by Condition and Assessment Time.

Students eligible for ROOTS Students ineligible for ROOTS

  Intervention Control Intervention Control

Measure Statistic T
1

T
2

T
1

T
2

T
1

T
2

T
1

T
2

TEMA standard score M (SD) 67.3 (9.58) 85.3 (9.54) 70.3 (9.89) 84.2 (12.05) 86.1 (14.51) 100.4 (12.32) 85.7 (15.42) 99.2 (12.37)
TEMA percentile M (SD) 4.0 (9.17) 20.3 (15.18) 5.1 (6.52) 20.5 (18.42) 25.1 (24.48) 51.6 (24.70) 24.6 (25.77) 48.2 (25.60)
EN-CBM M (SD) 14.9 (15.78) 106.3 (38.99) 21.4 (22.46) 100.0 (40.76) 61.3 (44.17) 160.0 (46.91) 60.9 (48.25) 153.1 (45.62)
Sample size n 58 63 67 63 228 236 260 255

Note. The sample sizes represent the maximum students available across measures for each assessment period. Minimum sample sizes included 3 fewer students among 
students eligible for ROOTS (T

1
 TEMA for controls) and 5 fewer students among students ineligible for ROOTS (T

1
 TEMA for intervention sample). EN-CBM = Early 

Numeracy Curriculum-Based Measurement; TEMA = Test of Early Mathematics Ability.

Table 2.  Fixed Effect and Variance Component Estimates From the Test of Condition on Mathematics Outcomes, With Hedges’s g 
Values for the Time × Condition Effect.

Effect or statistic TEMA standard score EN-CBM

Fixed effects
  Intercept 69.93**** (1.60) 20.88*** (5.41)
  Time 14.00**** (1.30) 78.89**** (6.15)
  Condition −2.84 (2.31) −5.98 (7.86)
  Time × Condition 4.07* (1.85) 12.01 (8.87)
Variance components
  Residual 53.66**** (8.62) 615.83**** (95.00)
  Student 37.37*** (10.77) 133.65 (82.63)
  Classroom intercept 17.90* (9.03) 131.36 (92.20)
  Classroom gains −0.84 (4.03) 135.03 (84.38)
Hedges’s g
  Time × Condition .375 .301

Note. Table entries show parameter estimates with standard errors in parentheses. Time is coded 0 for T
1
 and 1 for T

2
. Condition is coded 0 for 

control and 1 for ROOTS. All test fixed effects used 27 df. EN-CBM = Early Numeracy Curriculum-Based Measurement; TEMA = Test of Early Mathematics 
Ability.
*p < .05. ***p < .001. ****p < .0001.
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conditions of 4.1 for the TEMA standard scores and 12.0 for 
EN-CBM. These corresponded to Hedges’s g effect sizes of 
.38 for the TEMA standard score and .30 for the EN-CBM. 
Complete model results can be found in Table 2.

Closing the Gap

We hypothesized that students provided with the ROOTS 
intervention would make greater gains than students in the 
same intervention classrooms who did not receive ROOTS. 
That is, ROOTS was designed to close the gap between 
lower performing students and higher performing students. 
We tested this model with a second mixed model time by 
condition analysis. This time the model included the com-
plete sample of students with an additional predictor, 
ROOTS participation, and its interaction with condition. 
We then examined a specific test of math gains between 
students who received ROOTS versus those who did not in 
intervention classrooms. The gains made by ROOTS inter-
vention students exceeded gains by students who did not 
receive ROOTS by 3.5 on the TEMA standard score (t = 
2.33, df = 27, p = .0273) but not on the EN-CBM (t = −1.45, 
df = 27, p = .1579). The differential gain was statistically 
significant on the TEMA but was not on the EN-CBM.

It is interesting that students selected for small-group 
instruction in control classrooms made statistically signifi-
cantly smaller gains on the EN-CBM (−14.3) than students 
not selected in control classrooms (t = −2.55, df = 27, p = 
.0169). Although we had not hypothesized this result, it is 
generally consistent with the hypothesis that the ROOTS 
intervention may help close the gap, or in this case keep it 
from widening, between lower performing students and 
their more typically achieving peers.

Transitions Between Risk Categories

To address the practical implications of the effects of the 
ROOTS curriculum, we created a cross-tabulation of transi-
tions between risk categories from pretest to posttest for 
students deemed eligible for ROOTS. The boundary 
between high-risk and no risk was set at the 10th percentile. 
The 10th percentile was selected because it corresponds 
roughly to the percentage of the student population that is 
eventually classified as learning disabled in mathematics 
(Geary, 2004) and because all but 10 students in our at-risk 
sample fell below this marker at pretest. This analysis 
included the 111 students with TEMA data at both T

1
 and 

T
2
. In both conditions, students migrated out of the high-

risk category at a statistically significant rate (control, 
McNemar’s S = 18.61, p < .0001; intervention, McNemar’s 
S = 28.00, p < .0001). In the control condition, 50 of 57 
students (87.7%) were identified as high risk at pretest, as 
were 51 of 54 intervention students (94.4%). Of the high-
risk students at pretest, 24 (48.0%) in control classrooms 
and 28 (54.9%) in ROOTS classrooms shifted out of the 

high-risk category by the end of the school year. Although 
6.9% more students who received ROOTS transitioned out 
of the high-risk category than control students, this differ-
ence was not statistically significant, χ2(1) = 0.48, p = .4877.

Discussion

We examined the impact of a kindergarten mathematics 
intervention program, ROOTS, on the achievement of at-
risk students. We hypothesized that students in the ROOTS 
condition would demonstrate greater gains than their con-
trol peers and reduce the achievement gap between them-
selves and their non-at-risk peers. Both hypotheses were 
partially supported by our findings. ROOTS students dem-
onstrated significant gains compared to their controls on 
one of two distal measures and on both measures demon-
strated substantively important positive effects (WWC, 
2011). In addition, students in ROOTS reduced the achieve-
ment gap between themselves and their non-at-risk peers. In 
contrast, it should be noted that the achievement gap in the 
control classrooms widened. This finding in the control 
classrooms is consistent with the “Matthew effect,” in 
which the gap between low- and high-performing students 
increases over time. This effect is most commonly associ-
ated with low- and high-performing student samples in 
reading, but it is entirely consistent theoretically with simi-
lar predictions that could be made in early mathematics, 
particularly in the absence of effective intervention.

An important consideration when evaluating the find-
ings from the study is the context in which the research took 
place. In comparison to other studies where an intervention 
program is compared to business as usual condition or prac-
tice that has no evidence of effectiveness, control students 
in our study received instruction in a program, ELM, that 
has been shown to be efficacious with at-risk students 
(Clarke et al., 2011). Second, because ROOTS was deliv-
ered during ELM practice time, there was no difference in 
the overall amount of time spent on mathematics instruction 
between treatment and control students.

Limitations

The findings in this study should be interpreted with aware-
ness of limitations to the study. The primary limitation of 
the study is the potential for selection bias. Since students 
were not randomly assigned to condition, we are limited in 
our ability to attribute cause. The nonrandom selection of 
students introduces the possibility of selection bias. That is, 
the potential exists that teachers, because they were aware 
of the condition of their classroom, may have selected stu-
dents in a different manner than if they were not aware of 
condition. This process may have resulted in different 
groups of students being selected in treatment and control 
classrooms and differences between treatment and control 
students on either observed (i.e., pretest mathematics 

 by guest on February 9, 2016ldx.sagepub.comDownloaded from 

http://ldx.sagepub.com/


Clarke et al.	 161

achievement scores) or unobserved variables potentially 
confounding the interpretation of the study. In addition, we 
utilized a selection method that relied on teachers selecting 
students based on classroom data and their observation of 
student behavior and performance on a daily basis. Although 
the selection model chosen mirrors practice and thus 
emphasizes external validity, it sacrifices internal validity 
where the same criteria (e.g., cut score on a screening mea-
sure) would be used across classrooms.

The demographics of the sample in the present study dif-
fered from national demographics and thus as with any study 
conducted with a limited sample caution should be exercised 
when interpreting results. The importance of replication in 
education research is garnering increased attention (Duncan, 
Engel, Claessens, & Dowsett, 2013) given the complexities of 
social science research and the need to expose the null hypoth-
esis regarding an intervention’s hypothesis to repeated attempts 
at falsification. Replication using an array of experimental 
designs including RCTs and rigorous quasi-experimental 
designs across geographically and demographically diverse 
sites with different samples would increase confidence in eval-
uating the impact of ROOTS. Currently replication studies of 
ROOTS are in progress or planned in three different states.

The effect sizes reported in the study may also represent 
the upper bound of potential treatment effects. If teachers 
were able to accurately select the student most likely to ben-
efit from the treatment, then the results for that group would 
be the maximum possible for the intervention. In part, this 
represents the goal of a tiered instructional model where stu-
dents at risk are deliberately selected to receive an interven-
tion that would benefit them more than a not at risk group of 
students. Although as a group students in the study 
“responded” to the intervention, without better control of the 
selection process it is difficult to determine if the selected 
group in this study represents a typical response to the inter-
vention. Research on Tier 2 interventions is beginning to 
examine patterns of students who gain or fail to gain the full 
benefit of a Tier 2 intervention and in the case of evaluating 
a student for an MLD identifying students who don’t respond 
to research-based Tier 1 and Tier 2 instruction (L. S. Fuchs, 
Fuchs, & Compton, 2012). Such investigations will further 
our understanding of estimates of treatment effect for the 
range of students who receive intervention services. Further 
exploration of this issue is warranted and needed in particu-
lar as we attempt to construct the strongest possible instruc-
tional experience for students with learning disabilities (L. 
S. Fuchs & Vaughn, 2012). In addition, data for this study 
were collected only at pre- and posttest. Thus we are not able 
to explore whether or not growth patterns differed across 
time between control and treatment groups.

Educational Implications and Future Research

Encouragingly, the findings from this study fit within a pat-
tern of promising results generated by other intervention 

programs focused on the development of early mathematical 
knowledge. Commonalities across these programs are sig-
nificant and offer guidance both for future development of 
and research into effective programs. First, there is a concen-
trated effort to reduce the amount of content coverage to pro-
vide a more in-depth and focused concentration on 
developing whole number understanding. For example, L. S. 
Fuchs et al. (2005) focused on 17 key first grade topics in the 
development of whole number understanding. Similarly, 
Dyson et al. (2013) focused on critical kindergarten whole 
number competencies designed to build beginning number 
sense. Second, programs utilized a more systematic and 
explicit approach to instruction often through the use of sug-
gested or scripted delivery of content. In part, this may help 
to ensure higher degrees of fidelity of implementation to the 
program and to key instructional practices (e.g., teacher 
models). The design of these programs to focus on whole 
number content and to employ a systematic and explicit 
instructional approach corresponds highly with approaches 
advocated for by a number of prominent documents (CCSS, 
2010; Gersten, Beckmann, et al., 2009; NMAP, 2008) and 
national organizations (NCTM, 2006). Consistent findings 
and common features across these programs suggest strongly 
that school should consider evaluating potential intervention 
programs with these parameters in mind.

A common goal in education is eliminating the achieve-
ment gap. Although this is an oft-stated goal, it is rarely 
achieved (Starkey & Klein, 2008). In this study, the achieve-
ment gap was not fully bridged. The student sample in the 
study consisted of students who were serve risk (i.e., below 
the 10th percentile). Thus although serious efforts at both 
Tier 1 (ELM) and Tier 2 (ROOTS) helped reduce the gap, it 
may be students who fall below the 10th percentile or those 
who end up needing Tier 3 services (i.e., in this case stu-
dents whose response to ELM and ROOTS was inadequate) 
need more than what is provided in typical intervention pro-
grams if they are to fully eliminate the achievement gap. To 
meet the needs of those students at greatest risk, Warren, 
Fey, and Yoder (2007) have advocated examining interven-
tion effectiveness through the lens of instructional intensity 
and have identified a number of variables that impact inten-
sity ranging from increasing teacher–student interactions, 
lesson length, and the number of lessons. For example, in 
response to previous iterations of the intervention not sig-
nificantly impacting student outcomes across a number of 
studies Bryant and colleagues (2011) have systematically 
attempted to increase the intensity of their intervention by 
increasing the number of lessons provided to at-risk stu-
dents. We have plans to examine a range of implementation 
variables that may help explain if and how ROOTS may 
increase student outcomes. Our observation and teacher 
reporting systems should provide insight on the particular 
teacher practices (e.g., teacher models) and content focus 
(e.g., base 10) that may mediate the association between 
ROOTS implementation and student outcomes.
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A unique feature of this study was the delivery of a Tier 
2 program in the context of research-based Tier 1 core 
instruction. A number of studies have examined mathemat-
ics programs or components of RtI models in isolation and 
in some cases have implemented a supplemental Tier 1 pro-
gram followed by a Tier 2 intervention program for nonre-
sponders (L. S. Fuchs et al., 2008). However, we know of 
no cases in which the impact of Tier 1 research-based core 
mathematics program and a Tier 2 intervention program 
have been studied in conjunction. It should be noted that we 
did not isolate the impact of either Tier 1 or 2, which would 
have required a study design including a condition where 
Tier 1 and Tier 2 consisted of business as usual. However, 
the inclusion of a research-based Tier 1 core program mir-
rors what we would consider best practices in school set-
tings. That is, schools approach instruction at a systems 
level and implement systems of support rather than imple-
menting singular programs in isolation. In reading, attempts 
to study and answer questions about the effectiveness of 
systems of support (i.e., RtI models) has been called for as 
the next step in advancing reading research and instruction 
(Baker et al., 2010). Even though efforts in the area are just 
beginning, initial results are promising (Nelson-Walker et 
al., 2012). And although it may be that the current state of 
mathematics research is not yet developed to a level that 
allows the study of mathematics service delivery systems, 
we see this area as one that warrants increased attention and 
eventual study. In addition, we see research that includes 
data collection during the course of the intervention as 
promising. As we attempt to identify students who don’t 
respond to Tier 1 and Tier 2 instruction, ongoing data col-
lection is vital to researching and building flexible systems 
of support to address the needs of all learners.

As evidence mounts that a successful start in mathemat-
ics is paramount and that at-risk students have serious and 
significant achievement gaps as early as kindergarten entry, 
we see a continued need for intervention programs that 
immediately address the need of kindergarten students at 
risk for MLD. Although it may not be feasible to fully elim-
inate achievement gaps with only a Tier 2 intervention (L. 
S. Fuchs & Vaughn, 2012) given this study’s finding that 
the ROOTS invention program reduced the gap by end of 
kindergarten, we see the need to examine programs that 
either provide a more intensive level of support within kin-
dergarten or attempt to build systems of support across 
grades (e.g., K and 1) or across settings (e.g., prekindergar-
ten to kindergarten). Given the promising findings in each 
of these age/grade levels (Bryant et al., 2011; Clements & 
Sarama, 2007; L. S. Fuchs et al., 2005; Klein, Starkey, 
Clements, Sarama, & Iyer, 2008), future research that 
examines multiyear interventions seems especially critical 
if we are to address long-standing achievement gaps. We 
believe that continued and focused research in the areas of 
intervention program development, service delivery mod-
els, and multiyear interventions shows promise in 

significantly affecting the long-term mathematics outcomes 
of at-risk students.
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